๐ A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) in a Hospital Setting Through Bioaerosols
ยฉ 2019 Society for Risk Analysis. Middle Eastern respiratory syndrome, an emerging viral infection with a global case fatality rate of 35.5%, caused major outbreaks first in 2012 and 2015, though new cases are continuously reported around the world. Transmission is believed to mainly occur in healthcare settings through aerosolized particles. This study uses Quantitative Microbial Risk Assessment to develop a generalizable model that can assist with interpreting reported outbreak data or predict risk of infection with or without the recommended strategies. The exposure scenario includes a single index patient emitting virus-containing aerosols into the air by coughing, leading to short- and long-range airborne exposures for other patients in the same room, nurses, healthcare workers, and family visitors. Aerosol transport modeling was coupled with Monte Carlo simulation to evaluate the risk of MERS illness for the exposed population. Results from a typical scenario show the daily mean risk of infection to be the highest for the nurses and healthcare workers (8.49 ร 10โ4 and 7.91 ร 10โ4, respectively), and the lowest for family visitors and patients staying in the same room (3.12 ร 10โ4 and 1.29 ร 10โ4, respectively). Sensitivity analysis indicates that more than 90% of the uncertainty in the risk characterization is due to the viral concentration in saliva. Assessment of risk interventions showed that respiratory masks were found to have a greater effect in reducing the risks for all the groups evaluated (>90% risk reduction), while increasing the air exchange was effective for the other patients in the same room only (up to 58% risk reduction).
author
๐ค Adhikari, Umesh
๐ค Chabrelie, Alexandre
๐ค Weir, Mark
๐ค Boehnke, Kevin
๐ค McKenzie, Erica
๐ค Ikner, Luisa
๐ค Wang, Meng
๐ค Wang, Qing
๐ค Young, Kyana
๐ค Haas, Charles N.
๐ค Rose, Joan
๐ค Mitchell, Jade
year
โฐ 2019
journal
๐ Risk Analysis
issn
๐ 15396924 02724332
volume
39
number
12
page
2608-2624
citedbycount
0
download
๐ [BibTeX]