๐ Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30. min of contact time in a cell culture system while a mixture of methanol and acetone required 60. min to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities.
keywords
๐ cell culture (240)
author
๐ค Kumar, Mia
๐ค Mazur, Steven
๐ค Ork, Britini L.
๐ค Postnikova, Elena
๐ค Hensley, Lisa E.
๐ค Jahrling, Peter B.
๐ค Johnson, Reed
๐ค Holbrook, Michael R.
year
โฐ 2015
issn
๐ 18790984 01660934
volume
223
number
page
13-18
citedbycount
5
download
๐ [BibTeX]