RNA interference (RNAi) is triggered by the presence of a double-stranded RNA (dsRNA), and results in the silencing of homologous gene expression through the specific degradation of an mRNA containing the same sequence. dsRNA-mediated RNAi can be used in a wide variety of eucaryotes to induce the sequence-specific inhibition of gene expression. Synthetic 21-23 nucleotide (nt) small interfering RNA (siRNA) with 2 nt 3โ€ฒ overhangs was recently found to mediate efficient sequence-specific mRNA degradation in mammalian cells. Here, we studied the effects of synthetic siRNA duplexes targeted to SARS coronavirus structural proteins E, M, and N in a cell culture system. Among total 26 siRNA duplexes, we obtained 3 siRNA duplexes which could sequence-specifically reduce target genes expression over 80% at the concentration of 60 nM in Vero E6 cells. The downregulation effect was in correlation with the concentrations of the siRNA duplexes in a range of 0-60 nM. Our results also showed that many inactive siRNA duplexes may be brought to life simply by unpairing the 5โ€ฒ end of the antisense strands. Results suggest that siRNA is capable of inhibiting SARS coronavirus genes expression and thus may be a new therapeutic strategy for treatment of SARS.