๐ Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13
Severe acute respiratory syndrome (SARS) is an infectious disease with a strong potential for transmission upon close personal contact and is caused by the SARS-coronavirus (CoV). However, there are no natural or synthetic compounds currently available that can inhibit SARS-CoV. We examined the inhibitory effects of 64 purified natural compounds against the activity of SARS helicase, nsP13, and the hepatitis C virus (HCV) helicase, NS3h, by conducting fluorescence resonance energy transfer (FRET)-based double-strand (ds) DNA unwinding assay or by using a colorimetry-based ATP hydrolysis assay. While none of the compounds, examined in our study inhibited the DNA unwinding activity or ATPase activity of human HCV helicase protein, we found that myricetin and scutellarein potently inhibit the SARS-CoV helicase protein in vitro by affecting the ATPase activity, but not the unwinding activity, nsP13. In addition, we observed that myricetin and scutellarein did not exhibit cytotoxicity against normal breast epithelial MCF10A cells. Our study demonstrates for the first time that selected naturally-occurring flavonoids, including myricetin and scultellarein might serve as SARS-CoV chemical inhibitors. ยฉ 2012 Elsevier Ltd.
keywords
๐ resonance energy (16)
๐ infectious disease (312)
๐ respiratory syndrome (2004)
๐ acute respiratory (1734)
๐ energy transfer (19)
author
๐ค Yu, Mi Sun
๐ค Lee, June
๐ค Lee, Jin Moo
๐ค Kim, Younggyu
๐ค Chin, Young Won
๐ค Jee, Jun Goo
๐ค Keum, Young Sam
๐ค Jeong, Yong Joo
year
โฐ 2012
issn
๐ 0960894X 14643405
volume
22
number
12
page
4049-4054
citedbycount
34
download
๐ [BibTeX]