📄 Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis
Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE. © 2011 De. Diego et al.
keywords
🔗 respiratory syncytial (49)
🔗 infected cells (307)
🔗 respiratory syndrome (2004)
🔗 acute respiratory (1734)
author
👤 DeDiego, Marta L.
👤 Nieto-Torres, Jose L.
👤 Jiménez-Guardeño, Jose M.
👤 Regla-Nava, Jose A.
👤 Álvarez, Enrique
👤 Oliveros, Juan Carlos
👤 Zhao, Jincun
👤 Fett, Craig
👤 Perlman, Stanley
👤 Enjuanes, Luis
year
⏰ 2011
journal
📚 PLoS Pathogens
issn
🗄 15537366 15537374
volume
7
number
10
page
citedbycount
64
download
🔖 [BibTeX]