cDNA clones mapping within the first 2601 bases of the 3โ€ฒ end of the porcine transmissible gastroenteritis coronavirus (TGEV) genome were sequenced by the method of Maxam and Gilbert and an open reading frame yielding a protein having properties of the matrix (M or E1) protein was identified. It is positioned at the 5โ€ฒ side of the nucleocapsid (N) gene from which it is separated by an intergenic stretch of 12 bases. The deduced M protein comprises 262 amino acids, has a molecular weight of 29,544, is moderately hydrophobic, and has a net charge of +7 at neutral pH. Thirty-four percent of its amino acid sequence is homologous with the M protein of the bovine coronavirus (BCV), 32% with that of the mouse hepatitis coronavirus (MHV), and 19% with that of the avian infectious bronchitis coronavirus (IBV). Judging from alignment with the BCV, MHV, and IBV M proteins, the amino terminus of the TGEV M protein extends 54 amino acids from the virion envelope which compares with only 28 for BCV, 26 for MHV, and 21 for IBV. Eleven of the sixteen amino-terminal amino acids are hydrophobic and the positions of charged amino acids around this sequence suggest that the first 16 amino acids comprise a potentially cleavable signal peptide for membrane insertion. A similar sequence is not found in the M proteins of BCV, MHV, or IBV. When mRNA from infected cells, or RNA prepared by in vitro transcription of the reconstructed M gene, was translated in vitro in the presence of microsomes, the M protein became translocated and glycosylated. When a protein without the amino-terminal signal peptide was made by translating a truncated version of the M gene transcript, some translocation and glycosylation also occurred suggesting that the amino-terminal signal peptide on the TGEV M protein is not an absolute requirement for membrane translocation. Interestingly, the amino-terminal peptide did not appear to be cleaved during in vitro translation in the presence of microsomes suggesting that a step in virion assembly may be required for proper exposure of the cleavage site to the signal peptidase. ยฉ 1988.