The open reading frame potentially encoding a polypeptide of 27.7 kDa and located as the second of three ORFs (gene 3b) between the S and M genes in the genome of the Purdue strain of porcine transmissible gastroenteritis coronavirus (TGEV) was cloned and expressed in vitro to examine properties of the protein. Gene 3b has a postulated role in pathogenesis, but its truncated form in some laboratory-passaged strains of TGEV has led to the suggestion that it is not essential for virus replication. During synthesis in vitro in the presence of microsomes, the 27.7-kDa polypeptide became an integral membrane protein, retained its postulated hydrophobic N-terminal signal sequence, and underwent glycosylation on apparently two asparagine linkage sites to attain a final molecular mass of 31 kDa. A 20-kDa N-terminally truncated, nonglycosylated, nonanchored form of the protein was also made via an unknown mechanism. The existence of both transmembrane and soluble forms of the gene 3 product in the cell is suggested by immunofluorescence patterns showing both a punctated perinuclear and diffuse intracytoplasmic distribution. No gene 3b product was found on gradient-purified Purdue TGEV by a Western blotting procedure that would have detected as few as 4 molecules/virion, indicating the protein probably is not a structural component of the virion.
year โฐ 1999
issn ๐Ÿ—„ 00426822
volume 256
number 1
page 152-161
citedbycount 8