📄 Development of a red-shifted fluorescence-based assay for SARS-coronavirus 3CL protease: Identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata
SARS-coronavirus (SARS-CoV) encodes a main protease, 3CLpro, which plays an essential role in the viral life cycle and is currently the prime target for discovering new anti-coronavirus agents. In this article, we report our success in developing a novel red-shifted (RS) fluorescence-based assay for 3CLpro and its application for identifying small-molecule anti-SARS agents from marine organisms. We have synthesised and characterised the first generation of a red-shifted internally quenched fluorogenic substrate (RS-IQFS) for 3CLpro based on resonance energy transfer between the donor and acceptor pair CAL Fluor Red 610 and Black Hole Quencher-1 (Km and kcat values of 14 μM and 0.65 min-1). The RS-IQFS primary sequence was selected based on the results of our screening analysis of 3CLpro performed using a series of blue-shifted (BS)-IQFSs corresponding to the 3CLpro-mediated cleavage junctions of the SARS-CoV polyproteins. In contrast to BS-IQFSs, the RS-IQFS was not susceptible to fluorescence interference from coloured samples and allowed for successful screening of marine natural products and identification of a coumarin derivative, esculetin-4-carboxylic acid ethyl ester, a novel 3CLpro inhibitor (IC50=46 μM) and anti-SARS agent (EC50=112 μM; median toxic concentration >800 μM) from the tropical marine sponge Axinella corrugata. Copyright © by Walter de Gruyter.
author
👤 Hamill, Pamela
👤 Hudson, Derek
👤 Kao, Richard Y.
👤 Chow, Polly
👤 Raj, Meera
👤 Xu, Hongyan
👤 Richer, Martin J.
👤 Jean, François
year
⏰ 2006
journal
📚 Biological Chemistry
issn
🗄 14316730 14374315
volume
387
number
8
page
1063-1074
citedbycount
10
download
🔖 [BibTeX]