π Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease
SARS coronavirus main protease (SARS-CoV M pro) is essential for the replication of the virus and regarded as a major antiviral drug target. The enzyme is a cysteine protease, with a catalytic dyad (Cys-145/His-41) in the active site. Aldehyde inhibitors can bind reversibly to the active-site sulfhydryl of SARS-CoV M pro. Previous studies using peptidic substrates and inhibitors showed that the substrate specificity of SARS-CoV M pro requires glutamine in the P1 position and a large hydrophobic residue in the P2 position. We determined four crystal structures of SARS-CoV M pro in complex with pentapeptide aldehydes (Ac-ESTLQ-H, Ac-NSFSQ-H, Ac-DSFDQ-H, and Ac-NSTSQ-H). Kinetic data showed that all of these aldehydes exhibit inhibitory activity towards SARS-CoV M pro, with K i values in the ΞΌM range. Surprisingly, the X-ray structures revealed that the hydrophobic S2 pocket of the enzyme can accommodate serine and even aspartic-acid side-chains in the P2 positions of the inhibitors. Consequently, we reassessed the substrate specificity of the enzyme by testing the cleavage of 20 different tetradecapeptide substrates with varying amino-acid residues in the P2 position. The cleavage efficiency for the substrate with serine in the P2 position was 160-times lower than that for the original substrate (P2=Leu); furthermore, the substrate with aspartic acid in the P2 position was not cleaved at all. We also determined a crystal structure of SARS-CoV M pro in complex with aldehyde Cm-FF-H, which has its P1-phenylalanine residue bound to the relatively hydrophilic S1 pocket of the enzyme and yet exhibits a high inhibitory activity against SARS-CoV M pro, with K i=2.24Β±0.58ΞΌM. These results show that the stringent substrate specificity of the SARS-CoV M pro with respect to the P1 and P2 positions can be overruled by the highly electrophilic character of the aldehyde warhead, thereby constituting a deviation from the dogma that peptidic inhibitors need to correspond to the observed cleavage specificity of the target protease.
author
π€ Zhu, Lili
π€ George, Shyla
π€ Schmidt, Marco F.
π€ Al-Gharabli, Samer I.
π€ Rademann, JΓΆrg
π€ Hilgenfeld, Rolf
year
β° 2011
journal
π Antiviral Research
issn
π 01663542 18729096
volume
92
number
2
page
204-212
citedbycount
23
download
π [BibTeX]